Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37430759

RESUMO

The northwest-southeast convergence of the Eurasian and Nubian (African) plates in the western Mediterranean region propagates inside the Nubian plate and affects the Moroccan Meseta and the neighboring Atlasic belt. Five continuous Global Positioning System (cGPS) stations were installed in this area in 2009 and provide significant new data, despite a certain degree of errors (between 0.5 and 1.2 mm year-1, 95% confidence) due to slow rates. The cGPS network reveals 1 mm year-1 North/South shortening accommodated within the High Atlas Mountains, and unexpected 2 mm year-1 north-northwest/south-southeast extensional-to-transtensional tectonics within the Meseta and the Middle Atlas, which have been quantified for the first time. Moreover, the Alpine Rif Cordillera drifts towards the south-southeast against its Prerifian foreland basins and the Meseta. In this context, the geological extension foreseen in the Moroccan Meseta and Middle Atlas agrees with a crustal thinning due to the combined effect of the anomalous mantle beneath both the Meseta and Middle-High Atlasic system, from which Quaternary basalts were sourced, and the roll-back tectonics in the Rif Cordillera. Overall, the new cGPS data provide reliable support for understanding the geodynamic mechanism that built the prominent Atlasic Cordillera, and reveal the heterogeneous present-day behavior of the Eurasia-Nubia collisional boundary.

2.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336300

RESUMO

The Gibraltar Arc includes the Betic and Rif Cordilleras surrounding the Alboran Sea; it is formed at the northwest-southeast Eurasia-Nubia convergent plate boundary in the westernmost Mediterranean. Since 2006, the Campo de Dalias GNSS network has monitored active tectonic deformation of the most seismically active area on the north coast of the Alboran Sea. Our results show that the residual deformation rates with respect to Eurasia range from 1.7 to 3.0 mm/year; roughly homogenous west-southwestward displacements of the northern sites occur, while the southern sites evidence irregular displacements towards the west and northwest. This deformation pattern supports simultaneous east-northeast-west-southwest extension, accommodated by normal and oblique faults, and north-northwest-south-southeast shortening that develops east-northeast-west-southwest folds. Moreover, the GNSS results point to dextral creep of the main northwest-southeast Balanegra Fault. These GNNS results thus reveal, for the first time, present-day interaction of the roll-back tectonics of the Rif-Gibraltar-Betic slab in the western part of the Gibraltar Arc with the indentation tectonics affecting the eastern and southern areas, providing new insights for improving tectonic models of arcuate orogens.


Assuntos
Mariposas , Animais , Gibraltar
3.
Sensors (Basel) ; 21(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200584

RESUMO

GNSS observations constitute the main tool to reveal Earth's crustal deformations in order to improve the identification of geological hazards. The Ecuadorian Andes were formed by Nazca Plate subduction below the Pacific margin of the South American Plate. Active tectonic-related deformation continues to present, and it is constrained by 135 GPS stations of the RENAGE and REGME deployed by the IGM in Ecuador (1995.4-2011.0). They show a regional ENE displacement, increasing towards the N, of the deformed North Andean Sliver in respect to the South American Plate and Inca Sliver relatively stable areas. The heterogeneous displacements towards the NNE of the North Andean Sliver are interpreted as consequences of the coupling of the Carnegie Ridge in the subduction zone. The Dolores-Guayaquil megashear constitutes its southeastern boundary and includes the dextral to normal transfer Pallatanga fault, that develops the Guayaquil Gulf. This fault extends northeastward along the central part of the Cordillera Real, in relay with the reverse dextral Cosanga-Chingual fault and finally followed by the reverse dextral Sub-Andean fault zone. While the Ecuadorian margin and Andes is affected by ENE-WSW shortening, the easternmost Manabí Basin located in between the Cordillera Costanera and the Cordillera Occidental of the Andes, underwent moderate ENE-WSW extension and constitutes an active fore-arc basin of the Nazca plate subduction. The integration of the GPS and seismic data evidences that highest rates of deformation and the highest tectonic hazards in Ecuador are linked: to the subduction zone located in the coastal area; to the Pallatanga transfer fault; and to the Eastern Andes Sub-Andean faults.

4.
Sci Rep ; 9(1): 7148, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073216

RESUMO

Asthenospheric mantle flow drives lithospheric plate motion and constitutes a relevant feature of Earth gateways. It most likely influences the spatial pattern of seismic velocity and deep electrical anisotropies. The Drake Passage is a main gateway in the global pattern of mantle flow. The separation of the South American and Antarctic plates since the Oligocene produced this oceanic and mantle gateway connecting the Pacific and Atlantic oceans. Here we analyze the deep crustal and upper mantle electrical anisotropy of its northern margin using long period magnetotelluric data from Tierra del Fuego (Argentina). The influence of the surrounding oceans was taken into account to constrain the mantle electrical conductivity features. 3D electrical models were calculated to fit 18 sites responses in this area. The phase tensor pattern for the longest periods reveals the existence of a well-defined NW-SE electrical conductivity anisotropy in the upper mantle. This anisotropy would result from the mantle flow related to the 30 to 6 Ma West Scotia spreading, constricted by the subducted slab orientation of the Pacific plate, rather than the later eastward mantle flow across the Drake Passage. Deep electrical anisotropy proves to be a key tool for a better understanding of mantle flow.

5.
Sensors (Basel) ; 10(4): 3504-18, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22319309

RESUMO

The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...